*54*

You can use one of the following methods to create a pivot table in pandas that displays the counts of values in certain columns:

**Method 1: Pivot Table With Counts**

pd.pivot_table(df, values='col1', index='col2', columns='col3', aggfunc='count')

**Method 2: Pivot Table With Unique Counts**

pd.pivot_table(df, values='col1', index='col2', columns='col3', aggfunc=pd.Series.nunique)

The following examples show how to use each method with the following pandas DataFrame:

import pandas as pd #create DataFrame df = pd.DataFrame({'team': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'], 'position': ['G', 'G', 'F', 'C', 'G', 'F', 'F', 'F'], 'points': [4, 4, 6, 8, 9, 5, 5, 12]}) #view DataFrame df team position points 0 A G 4 1 A G 4 2 A F 6 3 A C 8 4 B G 9 5 B F 5 6 B F 5 7 B F 12

**Method 1: Create Pandas Pivot Table With Counts**

The following code shows how to create a pivot table in pandas that shows the total count of ‘points’ values for each ‘team’ and ‘position’ in the DataFrame:

#create pivot table df_pivot = pd.pivot_table(df, values='points', index='team', columns='position', aggfunc='count') #view pivot table df_pivot position C F G team A 1.0 1.0 2.0 B NaN 3.0 1.0

From the output we can see:

- There is
**1**value in the ‘points’ column for team A at position C. - There is
**1**value in the ‘points’ column for team A at position F. - There are
**2**values in the ‘points’ column for team A at position G.

And so on.

**Method 2: Create Pandas Pivot Table With Unique Counts**

The following code shows how to create a pivot table in pandas that shows the total unique number of ‘points’ values for each ‘team’ and ‘position’ in the DataFrame:

#create pivot table df_pivot = pd.pivot_table(df, values='points', index='team', columns='position', aggfunc=pd.Series.nunique) #view pivot table df_pivot position C F G team A 1.0 1.0 1.0 B NaN 2.0 1.0

From the output we can see:

- There is
**1**unique value in the ‘points’ column for team A at position C. - There is
**1**unique value in the ‘points’ column for team A at position F. - There is
**1**unique value in the ‘points’ column for team A at position G.

And so on.

**Note**: You can find the complete documentation for the pandas **pivot_table()** function here.

**Additional Resources**

The following tutorials explain how to perform other common operations in pandas:

Pandas: How to Reshape DataFrame from Long to Wide

Pandas: How to Reshape DataFrame from Wide to Long

Pandas: How to Group and Aggregate by Multiple Columns